
Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 6, 1996 

SOME M A N I F E S T A T I O N S  OF O R I E N T E D  T R A N S F O R M  

A B I L I T Y  OF S H A P E - M E M O R Y  ALLOYS 

A. A. Movchan UDC 539.4 

A unique feature of shape-memory alloys is that they can undergo oriented transformation [1, 2]. The 
essence of this phenomenon is as follows. Let a sample which is under stress nil cool in the direct martensite 
transformation temperature range (M1, M2). This gives rise to direct-transformation strain eij whose deviator 
is coaxial to the applied stress deviator. At a certain intermediate temperature To (M2 < To < M1), the 
acting stress vanishes. With a further decrease in temperature, the unloaded sample continues to deform in 
the direction of the previously applied stress. This can be explained by the growth of martensite crystallites 
oriented by the previously acting stress [2]. This phenomenon has been much studied experimentally on 
one-dimensional samples under tension and torsion [3, 4] and was described by micromechanical constitutive 
equations for shape-memory alloys [5-7]. 

In this paper, a method of solving boundary-value problems of direct transformations with variable 
boundary conditions is proposed. The method makes it possible to describe more complicated cases of oriented 
transformation. 

1. Constitutive equations for shape-memory alloys that model, using the micromechanical approach of 
[8], the process of nucleation and growth of thermoelastic martensite crystallites in an austenite matrix are 
given in [5-7]. For direct transformation from a fully austenite state, these constitutive equations have the 
form 

2 3 1~ o'~j 
~ij = ei�89 + Qj + Qj,  QJ = 2"--'G' 

dr i~ t a- _ 2~ 
dq = c~ + ~ 

1 3 = ~ ( T  - T o ) ~ j ,  

=/30 + 
dq 

(1.1) 

q = sin /~2 :-" MI"]' (1.2) 

where Q�89 Q2, and Q~- are the elastic, phase, and thermal strains, respectively; To >/M1 is the temperature at 
which the thermal strain is considered equal to zero; o'ij is the stress tensor; the prime denotes the deviator 
components; G and K are the shear and bulk moduli, respectively; a is the thermal-expansion coefficient; 
q is the volume portion of the martensite phase; and co, a0, and/30 are material constants whose values for 
titanium nickelide [3] and CuA1MnCo alloy [4] were determined in [6]. 

The solution of the differential equation for the phase-strain deviator is written as 
q 

= f g(q - g(q) = c0exp(a0q). 
0 

Here is an evident similarity with the case of linear viscoelasticity, the parameter q playing the role of time 
[it is possible to use other kernels, e.g., a power kernel K(q) = coqm)]. A fundamental difference of the model 
considered is that its kernel is an increasing function (a0 > 0 and m > 0), i.e., shape-memory alloys can be 
treated, by virtue of the above-mentioned analogy, as media with strengthened rather than decayed memory 
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about loading prehistory (with respect to q). This is connected with oriented transformation, which in ordinary 
viscoelastic media with decayed memory is not observed. The second difference is that  the parameter q can 
both increase and decrease. In the case of decreasing q (inverse transform), completely different constitutive 
equations hold true [5-7]. 

For many shape-memory alloys, the volume portion of the martensite phase q depends not only on 
temperature but also on acting stresses. However, this dependence can be ignored in studies of the deformations 
caused by oriented transformation in which stresses are removed. 

2. In solution of boundary-value problems, a Laplace transform with respect to the variable q is applied 
simultaneously to the constitutive equations, equilibrium equations, compatiblity conditions, and boundary 
conditions. In the image space, the constitutive equations for the image of the total strain take the form 

1 ^l 1 
- 2 (s) % '  gkk = 2 kk + g0(s), 

where the hat denotes a Laplace transform; 

/30 
s---~q, g o ( s ) -  s ( s - a o )  + 3 F ( s ) ,  F ( s ) - - + a ( T - T o ) ,  G(s)=Gs--a--~ d = a o - 2 c o G  (2.1) 

(the arrow indicates a Laplace correspondence). Thus, the direct-transformation problem reduces to an elastic 
problem with initial volumetric strain g0(s). 

This problem can be solved as follows. If generally variable, volume forces Fi(t)  and right-hand sides of 
both the force T~  [crijnj = T~  on ST] and kinematical u~ [ui = u~ on S,] boundary conditions are 
given, these quantities are expressed as functions of monotonically decreasing temperature  T(t): Fi = F i (T) ,  

~ = u ~  T ~ = T ~  and u i 
Using relation (1.2) we can represent these functions as functions of q, which is extended arbitrarily 

through the point q = 1 (provided that  Laplace transforms of the relevant functions exist). The simplest 
extensions are usually chosen. For example, functions that  are constant in the interval 0 < q < 1 are considered 
constant over the entire axis q > 0. Then,  Laplace transforms are determined: Fi(q) ~ ['i(s),  T~  ---+ 
ib~ and u~ ---* ri~ These will be, respectively, the volume forces and the force and kinematical 
boundary conditions of the equivalent elastic problem. Finding a solution of this problem as a function of the 
shear modulus G(s), of the initial volumetric strains go(s), and of the quantities ~'i(s), ~'~ and ri~ and 
performing an inverse Laplace transform, one can solve the original direct transformation problem. 

In what follows we shall need Laplace transforms for the following elastic constants: 

- -  s - 7 ( s  - -  a o ) ( s  - - / 3 )  (2.2) [:(s)  = E s a__.__~o ~,(s) = u - - - - ~ ,  D(s )  = D (s d)(s  - ,~) 
S - - / 3 '  S - -  " 

where/3 = ao - 2coE/3 ,  7 = ao - Eco / (3u ) ,  ~ = ao - coE/ (3 (1  - u)), and E, u, and m are the Young modulus, 
Poisson ratio, and cylindrical stiffness, respectively. It is easy to see that  for 0 < u ~< 0.5, a0 > 0, and co > 0, 
the following inequalities hold: 

a0 > 6/> [7/> d ~> 7, (2.3) 

where ~ = /7  = d = 3' for incompressible materials (u = 0.5). 
3. We consider a rod of constant cross section and length L made of a shape-memory alloy which is 

in the austenite state at temperature  To. Let the rod be fixed at one end, and the other end be subjected 
to longitudinal displacement u0 within the limits of elastic deformations and then fixed in the new position. 
The rod stretched in such a manner  is cooled in the temperature  range (M1, M2). This should result in stress 
relaxation, because phase deformation propagates toward the acting stress. 

The solution of the corresponding elastic problem with initial volume strain r has the form cr = 
E(80 - (1/3)r where g0 = uo /L .  Replacing the elastic modulus and the bulk strain by the expressions of 
g0(s) and of/~(s)  from (2.1) and (2.2), for the stress image, we obtain 

- 2c0E F ( s ) ]  [f0(s a0) 130 F(s )  + - -  
&(s) = EL ~ 3) 3s(s - a0) 3 s - /71" 
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Passing to the originals, one can find the tempera ture  dependence of the stress: 

6Ael l(q)] ~00 = ~ ( a o  + ~ o  _ A~o 2 ) ~ r  1 13o a(T-go To) [~ (A( l  - ~o2)+ 3 ~ o ) +  - ~ o  j exp(flq). (3.1) 

Here ao = Ego, A = 2Eco/3, r = a(M1 - M2), r = a(M1 - To), and 
q 

I(q) = J arcsin(r) e x p ( - ~ r ) d r .  (3.2) 
0 

The curves of S = cr/ao on q are shown in Fig. 1 by the solid curves for t i t an ium nickelide [3] (curve 1) 
and for CuA1MnCo alloy [4] (curve 2). In the first case, 

a0 = 0.718, co = 0.243.10 -3, 

E = 28,000MPa, a = 0 .6 .10  -5 [9], 

For the copper-based alloy [4], 

a 0 = 0 . 2 5 7 ,  c 0 = 0 . 1 5 2 . 1 0  -3 , 

=o .OOl l  [6, 71, 
(3.3) 

M1 = 5 0 ~  M2 = 25~ 

flo = 0.117.10 .3 [6, 7], 
(3.4) 

E = 7000MPa,  a = 0.143.10 -4 , M1 = - 2 7 ~  M2 = - 3 4 ~  [10]. 

In both cases, the initial stretching was carried out at temperature  T = M1 and initial strain 60 = 0.002. 
It is evident from the graphs that ,  as the temperature  decreases, the stresses vanish at a certain value 

q = q*, which depends on the material  parameters and on the initial strain 60. For instance, for 6o = 0.002 we 
have q* = 0.434 for t i tanium nickelide and q* = 0.743 for CuA1MnCo alloy. With  a decrease in 60 the value 
of q* also decreases. 

Upon further cooling, compressive stresses arise in the initially stretched rod. This is the consequence 
of oriented transformation,  because of which the phase-deformation rate is different from zero and positive, 
al though for q -- q* the stresses vanish. The ratio of the compressive stress for q -- 1 to the initial tensile 
stress due only to the oriented transformation reaches 0.62 for CuA1MnCo alloy and 0.21 for t i tanium nickelide 
[th~se values were obtained from formula (3.1) in the limit 60 ---* r in which the terms due to the volumetric 
phase and thermal strains vanish]. This effect is enhanced with a decrease in 60 (because of the volumetric 
and phase deformation and temperature  change). On the one hand, the thermal  compression decreases the 
compressive-stress magnitude,  because of cooling, for q > q*. On the other hand,  for q < q*, the thermal 
tensile stresses increase the subsequent effect of oriented transformation. Calculations show that the latter 
effect dominates.  For g0 -'* O, we have [S(1)[ --* oc. 
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Let now the rod be fixed at the other end, so that the rod is free to elongate by more than L + u0, 
but it cannot become shorter than L + u0. In this case, the boundary condition takes the form u(L) = uo for 
a < 0 and u(L) > uo for cr = 0. For this problem, solution (3.1) is valid only for q ~< q*. Upon further cooling, 
the rod elongates due to oriented transformation and volumetric phase strains and shortens due to thermal 
strains. It will be shown below that the elongation due to the first two factors exceeds the shortening due to 
the third factor. The rod will then be deformed in a stress-free state. The elastic strain is equal to zero, and 
the phase strain e2(q) can be found by integrating Eqs. (i.1) for aij = 0. As a result, the total strain can be 
determined from the formula 

e(q) = (e2(q *) +/30/3a0) exp[ao(q - q*)] - ~o/3ao + ~(T - To). 

Expressing the value of the phase strain for q = q* in terms of the given initial displacement u0 [e2(q *) = 
uo/L - a ( T  - To)], for the displacements of the free end of the rod for q/> q*, we obtain 

u = u0 exp[a0(q - q*)] + L[~o/3ao - o~(T - To)][exp(ao(q - q*)) - 1]. (3.5) 

According to this dependence, the inequality q > q* holds true for u > u0, i.e., the rod actually deforms in a 
stress-free state. 

Figure 2 shows the relative additional displacement of U = (u - uo)/uo versus the initial strain 60 
for complete transformation (q = 1). Curve 1 corresponds to titanium nickelide, and curve 2 corresponds to 
CuA1MnCo alloy. U ---* co as 60 ~ 0 (because of the volumetric strain due to the phase transformation and 
the temperature term). As 6o --~ co, the quantity U tends asymptotically to the quantity exp[a0(1 - q*)] - 1, 
which corresponds only to the phase strain due to shape change. One can see that the additional displacement 
caused by oriented transformation can exceed considerably the initial displacement u0. 

4. The problem of an infinite plane made of a shape-memory material with a round hole of radius a 
(planar stress) can be solved in a similar manner. A rigid round washer of radius a + W0 is inserted into the 
hole. We assume that the outer boundary of the washer is fastened rigidly (welded) to the boundary of the 
hole. This corresponds to the boundary condition in the form of given radial displacement W0 on the hole 
boundary. The solution of the corresponding elastic problem with initial volumetric strain e0 has the form 

W =  aWo + l  ( a _ ~ )  a ( a~o'~ (4.1) 
- , = = 2 G  W 0  - 

where r is the radius; W is the radial displacement; and ar and ~0 are the radial and tangent stresses, 
respectively. Substituting the operators G(s) and g0(~) (2.1) for the modulus G and the volumetric strain co 
in the above expressions and moving to the originals, we obtain 

W = aWor + r - [exp(a0q) - 1] y + c~(T - To) , 

{ a o - g e x p ( q d )  1[ /30 /3+  9el 29~2 ]} 
~ = - - O r 0  = O'0 d 60 " d (exp(qd) - 1) + a ( T  - To) + - - r  exp(qd)I(q) . (4.2) 

Here ~r0 = - 2 a G W o / r  ~ is a function that describes the radial-stress distribution in the elastic problem, 
g = 2Gc0, 6o = Wo/a,  and the integral I(q) was defined above by relation (3.2). 

The ratio S = C~r/aO versus q is shown in Fig. 1 by the dashed curves for t i tanium nickelide (3.3) 
(curve 1) and for CuA1MnCo alloy (3.4) (curve 2) (60 = 0.002). As can be seen from the graphs, the variation 
in stresses with an increase in q is qualitatively similar to the solution of the previous problem and differs 
from it quantitatively only slightly. 

We now assume that  the bonding between the washer and the hole boundaries is absent, i.e., the 
hole-boundary condition has the form W = W0 for cr~ < 0 and W > W0 for ~rr = 0. In this problem, solution 
(4.2) is true only for q ~< q*. In accordance with the second formula of (4.1), all strain components vanish at 
any point of the semi-plane for q = q*. Upon further cooling the material is free to deform in an unstressed 
state owing to oriented transformation. Proceeding as in the previous problem, for the hole-boundary radial 
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displacement W, we have 

W = W0 exp[a0(q - q*)] + a[flo/3ao - a ( T  - To)][exp(ao(q - q*)) - 1]. (4.3) 

Formula (4.3) is derived from Eq. (3.5) by subst i tut ing the hole radius a for the rod length L. Nevertheless, 
the relative displacement W / W o  in the problem of a plane with a hole is somewhat  different from the value 
of u/uo of the rod problem for the same value of the relative initial displacement and the value of q, because 
the values of q* are different in the two problems. But,  qualitatively, the behavior of the solutions of both 
problems is the same. In particular, after a direct transformation in the half-plane the hole diameter can 
exceed considerably the washer diameter,  so that  their ratio tends to infinity as 50 --* 0. 

5. It is slightly more difficult to describe the experiment in which the phenomenon of oriented 
transformation was observed [1]. We consider a thin rectangular strip made of a shape-memory alloy in 
the austenite state and fixed at one end. The  other end is displaced by W0 upon one-side impact of a 
rigid support  (the displacement can freely increase but not decrease). The  band is then cooled in the 
direct martensi te  transformation tempera ture  range. Vitaikin et al. [1] found that ,  starting with a certain 
intermediate temperature  T1, upon subsequent cooling, the strip moves away from the support ,  and the other 
end of the strip accomplishes an additional displacement in the same direction as W0. The temperature  Tl 
does not depend on the initial deflection W0. The total deflection W upon cooling to a fixed temperature is 
proportional to the initial deflection W0 [1]. 

In solving the bending problem within the framework of the Kirchhoff-Love hypothesis, one can ignore 
the effect of volumetric, phase, and thermal deformations on the deflection. The solution of a cylindrical elastic 
bending problem for a rectangular strip fixed at one end and displaced by W0 at the other end has the form 

3 u D W o  3DWo W =  Wo 3x 2 x 3 3 D W o  ( L _  x) ,  M y =  - - ( L - x ) ,  P =  
2L 2 - -~'), Ms - L------ T -  L3 L3 

Here L is the strip length; x is the longitudinal coordinate; Ms and M r are the bending moments;  and P is 
the concentrated transverse force per unit  of strip width which acts on the plate from the support  for z = L. 
Applying a Laplace transform to the problem in which the position of the end of the plate is fixed from two 
sides and using expressions (2.2), for/])(s) and tS(s), we obtain 

M-s(s) _ P ( s )  - 3 W o D  (s - ao)(s - ~ ) .  (5.1) 
x - L  L 3 s ( s - d ) ( s - ~ ) '  

My(s.......~) _ 3W0u_______DD (s - ao)(s - "~) (5.2) 
L 3 s ( s -  d)(s - ~)" x - L  

Transforming to originals, we have 

P ( q )  = ( 3 W o D / L Z ) f l ( q ) ,  Mx(q)  = P ( q ) ( x  - L); (5.3) 

f l ( q )  = A e x p ( d q )  + Bexp(6q) + C; (5.4) 

d 2 - d(ao + ~)  + ao~ 62 - $(ao + ~)  + ao~ ao~3 
A = B = C = (5.5) 

d(d - if) ' ~(tf - d) ' d~"  

According to (5.3) and inequality (2.3), the force P decreases with increasing q. For some value of 
q = q* that  is a root of the equation f l ( q )  = 0 and does not depend on W0, both the force P and the bending 
moment  M~ vanish along with the stresses o'~. After that ,  in the problem with a two-side fastening of one 
end of a plate, the force P,  which is necessary to maintain the deflection W0 constant,  becomes negative and 
increases in absolute magni tude upon further cooling. The bending moment  Ms and the corresponding normal 
stresses o"s also change signs, so that  tensile stresses as emerge on the side of the plate facing displacement 
W0 and compressive stresses emerge on the opposite side of the plate. It is clear that  this effect is the result 
of oriented transformation. For the t i tanium nickelide with the above-mentioned characteristics, q* = 0.563, 
and for the CuA1MnCo alloy q* = 0.817. 

Going to the originals in formula (5.2), for the bending moment  My we obtain My(q) = 
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(3WovD/LS)f2(q)(z - L), where the function f2(q) is calculated by formula (5.4), but one should substitute 
7 for the parameter /3 in expressions (5.5) for the coefficients. Using inequalities (2.3), one can show that 
the value of the function f2 will decrease with increasing q, but more slowly than the corresponding values 
of f l .  Therefore, for the CuAIMnCo alloy, the transverse moment My remains positive while decreasing with 
increasing q. For t i tanium nickelide, both the moment My and the stresses ay vanish for q = q** = 0.687, and 
they change signs upon further cooling. Since q** > q*, stress relaxation will be not complete in the plate for 
any value of q. 

The solution obtained above is true also for 0 ~< q ~< q* for the problem with a one-sided fastening of 
the right-hand end of a plate. Solution for q > q* is complicated due to the fact that the nonvanishing stresses 
ay remain in the plate, and the stress-deviator components entering into the phase strain equation are not 
only nonvanishing but vary in the course of deformation. For this reason, a Laplace transformation is used to 
solve the problem with one-side fastening for q > q*. To find the bending deflection for q > q*, one must solve 
the problem of the action on the right-hand plate end of a force Pl(q) that varies as Pl(q) = (3WoD/LS)fl(q) 
for q < q* and P1 (q) = 0 for q > q*. The solution of the corresponding equivalent elastic problem for the 
deflection of the right-hand end has the form 

W(s)  = (5.6) 

The Laplace transform of the function Pl(q) is found most simply using the definition 

q* 
3WoD 

f fl (q) exp(-sq)dq - L3 
0 

3WoD A6exp(q*d) q- Bdexp(q*6) - C6d -I- Cs(d + ~) 
-- L 3 s(d - s)(~ - s) exp(-sq*).  (5.7) 

Substituting (5.7) into (5.6) and going to originals, we obtain 

W = (a0 + ~) exp[/3(q - q*)] - (/3 + A) exp[a0(q - q*)] (5.8) 

W0 a0 - / 3  ' 

)~ = Adexp(q*d) + B6exp(q*8). 

The solution is considerably simplified for an incompressible material (v = 0.5): 

W = W0 exp[a0(q - q*)]. (5.9) 

Relation (5.9) is true if one considers oriented transformation in a bent beam rather than in a plate. Since, 
according to (5.8) or (5.9), the inequality W > W0 is valid for q > q*, the right-hand end of the plate actually 
moves away from the support. Since q* does not depend on W0, the temperature at which the departure 
begins is the same for all values of W0. This is in agreement with the experimental results of [1]. According 
to the solutions obtained above, the deflection W for fixed q is actually proportional to W0, as was observed 
in the experiment of [1]. 

Figure 3 shows the dependence of ~ = W/Wo on q calculated by formula (5.8) for the titanium nickelide 
(curve 1) and for the CuA1MnCo alloy (curve 2). It is interesting that for the material constants typical of 
these alloys, the values calculated by formulas (5.8) and (5.9) differ in the third decimal sign. 

6. We now consider the contact problem of a punch with a parabolic base [profile y = xe/(2R)] pressed 
by a force P to a half-plane made of shape-memory material in the austenite state. The normal displacements 
of points of the half-plane and punch are the same and there are no tangential stresses between them. The 
system is cooled in the direct martensite transformation temperature region. It is required to find the variation 
in pressing force P that provides a constant contact area 2L. 

The elastic solution for the problem of pressure S under the punch has the form [11] 

( G L ~ - 2 x  2 P~q)) _ x2)_o.5, 
S = 1 - u 2R + (L2 (6.1) 
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where P(q) is an unknown external force acting on 
obtain 

a 
S ( s ) =  1 - u  s ( s - d ) ( s - 6 )  

the punch. Going to an equivalent elastic problem, we 

L 2 _ 2x 2 

2R 
+ P ~ s ) ) ( L 2 -  x2)-~ ' 

where/5(s) is the Laplace transform of the function P(q). Going to the originals, we have 

S(q,x) = ( G L 2 -  2z 2 P~q)) x2)_0.s, 
~ - u  fl(q) 2R + (L2 - 

where the function fl(q) is defined by formula (5.4). This problem with a varying load is simple to solve only 
because the term that is proportional to the force in solution (6.1) does not depend on the elastic constants. 
Taking into account the pressure finiteness conditions for x = L, we find the desired relation 

L 2 
G 7rfl(q) ~-~. (6.2) P(q) - 1 - u 

According to (6.2), upon cooling, the force required to keep the contact area constant decreases and 
vanishes for q = q*, where q* is a root of the equation fl(q) = 0. For this value of q there is no force interaction 
between the punch and the half-plane, but the strain rate is nonvanishing because of oriented transformation. 
Thus, the force required to keep the contact area constant during cooling becomes negative, i.e., the material 
"draws" the punch into itself. Of course, this conclusion is true only in the formulation of problem considered, 
in which the points of the punch cannot move away from the corresponding points of the half-plane. In the 
problem of direct transformation with a constant force P acting on the punch, the dependence of the half-size 
of the contact area L on q can be found from Eq. (6.2). As a consequence, the contact area increases upon 
cooling and tends to infinity for q --+ q*. Again, this is the result of oriented transformation. 
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